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Dept of Mechanical and Industrial Engineering, Marquetre Universiry, Milwaukee, WI 53233. U. S. A 

SUMMARY 

This paper presents results obtained by employing a modified Galerkin finite element method to analyse 
the steady state flow of a fluid contained between two concentric, rotating spheres. The spheres are assumed 
to be rigid and the cavity region between the spheres is filled with an incompressible, viscous, Newtonian 
fluid. The inner sphere is constrained to rotate about a vertical axis with a prescribed angular velocity, 
while the outer sphere is fixed. Results for the circumferential function R, streamfunction Y, vorticity 
function ( and inner boundary torque Tl are presented for Reynolds numbers Re < 2000 and radius ratios 
0.1 < a  < 0.9. The method proved effective for obtaining results for a wide range of radius ratios 
(0.1 < z < 0.9) and Reynolds numbers (0 < Re < 2000). Previous investigators who employed the finite 
difference method experienced difficulties in obtaining results for cases with radius ratios a < 0.2, except 
for small Reynolds numbers (Re < 100). Results for R, \y, (' and TI obtained in this study for radius ratios 
0.8 < a < 0.9 verified the development of Taylor vortices reported by other investigators. The research 
indicates that the method may be useful for analysing other non-linear fluid flow problems. 

KEY WORDS Finite element Fluid flow Rotating sphere 

INTRODUCTION 

The problem involving the motion of a viscous, incompressible fluid contained between two 
concentric spheres rotating about a common axis with prescribed angular velocities and/or 
torques has been the subject of extensive research in engineering, meteorology and geophysics. 
Previous investigators have employed various methods to study this problem. Experimental 
studies on boundary torques and fluid stability for the problem involving the steady state flow 
of a fluid in a gap between two spheres with prescribed angular velocities have been conducted 
by Sorokin el al.,', Khlebutiq2 Zierep and S a ~ a t z k i , ~  Munson and M e n g ~ t u r k , ~  Wimmer,s-6 
B~hler , ' .~  Yavorskaya et Nakabayashi" and Waked and Munson.' ' . 1 2  These studies 
indicated that the onset of stability is affected by the radius ratio as well as the Reynolds number. 

Several investigators have studied this problem with the use of analytical methods. Proud- 
man,' S t e ~ a r t s o n ' ~  and Carrier" employed a singular perturbation method to solve the steady 
state problem involving the flow between two spheres which are rotating about the same axis 
with nearly the same angular velocities. Their boundary layer solution is valid for large Reynolds 
numbers. Munson and JosephI6 employed a high-order perturbation method to solve the steady 
state problem between two spheres rotating with different angular velocities. Their solution is 
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valid for Reynolds numbers Re < lo00 and a radius ratio a = 0.5. Gagliardi er al.” also 
employed this method to obtain results for both the steady state and transient cases. These 
results are valid for Re < 100 and 0.2 < a < 0.9. 

Haberman’ also solved this problem with an analytical method by employing the primary 
s o l ~ t i o n ’ ~  for the circumferential function R and approximating the equation for the streamfunc- 
tion Y. His solution is valid for small Reynolds numbers and 0 < a < 0.9. Dennis and SinghZ0 
extended this work by using a series method to reduce the fluid equations to a system of 
ordinary differential equations. They solved these equations numerically for Re < 2000 and 
a = 0.5. Gulwadi and Elkouh” developed an iterative series method to solve the problem 
of unsteady laminar flow in the annulus. Their results are valid for Re < 100 and a < 1. 
Marcus and T ~ c k e r m a n ~ ~ ~ ’ ~  applied a pseudospectral numerical method to solve the steady 
state and transition problems with c1 = 0.85. These results indicated the development of flow 
with zero, one and two Taylor vortices when the Reynolds number reached a critical value 
(Re = 650). 

The vast majority of investigators who studied this problem employed the finite difference 
method. P e a r ~ o n ~ ~ . ~ ’  obtained results for cases in which one (or both) of the spheres is given 
an impulsive change in angular velocity, starting from a state of either rest or uniform rotation. 
His results are valid for Re Q 1500 and a = 0.5. Greenspan26 and Schultz and GreenspanZ7 
obtained results which are valid for Re < 3000 and a = 0.5. Schrauf” applied this method 
to the narrow gap problem (a = 0.85). His results are valid for Re Q 2100. Dennis and 
Q ~ a r t a p e l l e ~ ~  applied a fourth-order finite difference method and obtained results which are 
valid for Re Q 1500 and 0.5 < t~ d 0.85. Schwengels et al.” employed a second-order finite 
difference method and obtained results which are valid for Re Q 3000 and a = 0.5. 

Krause and Bartels31 applied the finite difference method to study the transient flow in a 
spherical annulus where the inner sphere is started suddenly and the outer one is at rest. They 
obtained results for Re < 14000 and 0.85 < a < 0.975. Yang et ~ 7 1 . ~ ’  also employed this method 
to analyse the transient flow of a fluid between two spheres which are started suddenly by the 
action of prescribed torques. They presented results for Re Q 3000 and 0.2 < a < 0.9. Lin33 
applied this method to study the motion of the fluid in an annulus between two rotating and 
precessing spheres. He obtained results for Re < 100 and 0.5 < a < 0.9. 

In the 1960s investigators began to employ the Galerkin finite element method to solve 
fluid flow problems involving steady, inviscid, incompressible flow governed by Laplace’s 
equation. Cheng,37 C h ~ n g , ~ ~  Oden and c o - w ~ r k e r s ~ ~ ~ ~  and Olson43 were among 
the first to apply this method to the general fluid flow problem. A survey of this early 
research can be found in References 44-46. However, to date, only Bar-Yoseph et aL4’ have 
applied the finite element method to the problem of fluid flow between two rotating spheres. 
They formulated the fluid equations in terms of the pressure and velocity variables and applied 
the conventional Galerkin finite element method. Their solution is valid for Re < 1000 and 
t( = 0.5. 

In general, the analytical and finite difference methods which have been employed by previous 
investigators to solve this problem have not been effective for obtaining results for wide radius 
ratios (a < 0.5), except for small Reynolds numbers (Re  < 100), and for narrow gap cases 
(0.8 < a < 0.9) for computing the onset of Taylor vortices. Moreover, these methods are not 
suitable for extension to flow problems with non-spherical cavities. This limitation is overcome 
by the finite element method; however, the conventional Galerkin finite element method has 
not been employed (extensively) in the past owing to difficulties stemming from integration of 
the non-linear fluid flow equations. This difficulty is overcome by the modified Galerkin finite 
element method which is employed in this study. 
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Outer Fixed 
Boundary 

Figure 1 .  Notation for flow in a spherical annulus 

FLUID EQUATIONS 

The problem under study involves the steady state motion of an incompressible Newtonian fluid 
contained in an annulus between two concentric, rotating spheres (see Figure 1). The spheres 
are assumed to be rigid and the cavity region between the spheres is filled with a viscous fluid. 
The inner sphere is constrained to rotate about the vertical axis with a prescribed angular 
velocity, while the outer sphere is fixed. The Navier-Stokes equations are developed in spherical 
form and the pressure variable is eliminated by employing the streamfunction formulation. The 
velocity components are defined as 

R* 
(1) 

where u* is the velocity component in the radial direction, u* is the velocity component in the 
meridional direction, w* is the velocity component in the circumferential direction, Y* is the 
streamfunction and R* is the circumferential function. 

Substitution of equation (1) into the Navier-Stokes equations, introduction of the vorticity 
variable i* and transformation to dimensionless form yields 

w,* = ~ 

1 JY* v * = - - -  
r*2sin8 dB ’ r*sin8 dr* ’ r* sin 8 ’ 

1 dY* u * = p -  ~ 
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= 0, YrQ, - yoor D2R + Re 
r2 sin e 

2 R e 0  Re 
r3 sin2 8 

(Qrr cos 8 - Q, sin 0)  - - (Yr i o  - Cr) 
~. 

r2  sin 8 

2Rec 
r3 sin' 8 

+.- (Yrr cos tl - Y o  sin 0) - D2( = 0, 

[ - D 2 Y  = 0, 

(2b) 

(2c) 

where 

r = r*/Rf ,  Y = 'I'*/o:R:~, Q = Q*/w:Rf2, i = r*/w:R:, 

R: is the radius of the outer sphere, w: is the angular velocity of the inner sphere, Re = w:Rf'/v* 
is the Reynolds number and 

The dimensionless boundary torques are 

T. = 3 1: [r(r - 2Q)]1 
sin 8 dB (i = 1, 2), 

' 2  r = R .  

where 

= - T:/;npfv*w:Rf3, 

p)! is the density of the fluid and Ri = R f / R t .  
The dimensionless symmetry and boundary conditions are given respectively as 

Y ( r ,  0) = Y(r. 4 2 )  = Y(rl 0)  = Y ( r 2 ,  8) = 0, 

a a a a 
- Y(r, 0) = - Y(r, 4 2 )  = ~ Y ( r l ,  6) = - Y(r2, 0)  = 0, 
ar  ar dr  d r  

a a a 
ae ae ae -- Y ( r ,  0)  = - Y ( r 2 ,  0)  = - Y ( r l ,  0)  = 0 

and 

Q(r, 0)  = 0, 

Q(rl ,  e)  = wlr: sin2 8, 

Q(r2, e) = w2r: sin' 8, 

a a a 
ar ae ae ~ Q(r, 0) = ~ Q(r, 0) = ~ Qr, 4 2 )  = 0, 

( 4 4  
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a 
ae- - f2(rl, 0) = 2w,r: sin 0 cos 8, 

a 
ae - Qr,, 9) = 2 w , 4  sin e cos 8, 

MODIFIED FINITE ELEMENT METHOD 

Finite element mesh 

In order to apply the finite element method, the field domain is discretized with a uniform 
mesh of finite elements as shown in Figure 2. The discretized values for ri and ej are defined as 

ri  = ( i -  1)Ar + R , ,  

8, = (j - 1)Ae f o r j  = 1 , 2 , .  . ., J + 1, 
for i = 1 , 2  ,..., I + 1, 

where I is the number of divisions in the r-direction, J is the number of divisions in the 
. &direction, 

A8 = n/2J. (5e) 

Figure 2. Finite element mesh 
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( r *  ,%,I 
Figure 3. Transformation of element co-ordinates 

The polar elements are transformed into four-node rectangular elements as shown in Figure 
3. The relationships between the dimensionless rectangular element co-ordinates (4 ,  v ] )  and the 
polar nodal co-ordinates (Ti, O j )  are 

1 

a 
5 = - (r -- rc), 

The number of elements is given by the equation 

N = N ,  x No, ( 7 4  

where N is the total number of elements, N, is the number of increments in the r-direction and 
N o  is the number of increments in the &direction. The element aspect ratio is defined as 

where y is the aspect ratio, L f )  is the uniform dimensionless length of the element in the 
8-direction and I,:' is the uniform dimensionless length of the element in the r-direction. 

Interpolation functions 

The field variables are expanded over each element as 

12 

R") = c m i l l i ,  
i =  1 

1 2  

i =  1 
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where ai are element interpolation functions, 

a12 = - i ( q  + - 1Xv- 11, (91) 

Ri, ci, Yi (i = 1,2, .  . . , 12) are nodal co-ordinates, Qi, ci, Yi ( i  = 1,2,3,4) are nodal variables, 
Qi, ti, V i  (i = 5 , 6 , 7 , 8 )  are nodal derivatives with respect to 5 = (8Qi-,/85, 8Ci-,/8{, 8Yi-,/85) 
and Ri, T i ,  ‘Pi ( i  = 9, 10, 11, 12) are nodal derivatives with respect to q = (8Ri-,/dq, 8Ci-,/8q, 
ayi - S/dq). 

Finite element equations 

The fluid equations are reduced to algebraic form by employing a modification of the 
conventional Galerkin finite element method.45 With the conventional method the finite element 
equations are obtained by first integrating the Galerkin variational form with the aid of Green’s 
theorem. This can lead to difficulty in the case of non-linear boundary value problems. Cheng” 
circumvented this problem by linearizing the transient fluid flow equation at each time step 
before performing the integration by parts. He obtained the steady state solution from the 
asymptotic solution of the transient problem. 

In this research the nodal co-ordinates given in equations (8) are selected such that all the 
symmetry and boundary conditions (equations (4)) are automatically satisfied. The finite element 
equations are obtained directly from the Galerkin variational form without integration by parts. 
The variational form for this fluid flow problem is48 

where fi  , f2 and f3 are as defined in equations (2aH2c) respectively. 



214 W. NI AND N. J. NIGRO 

The finite element equations for the interior element are obtained by substituting equations 
(8) into equations (10) to yield 

fy )ay)  dR = 0, (1 1c) s 
where i = 1,2,3, .  . ., 12. 

The finite element equations for the boundary elements are obtained by replacing the 
appropriate equations in (1 1) with the actual nodal boundary conditions which satisfy equations 
(4). Substitution of equations (2) into equations (1 1) yields 

where i = 1,2,3, .  . . , 12. 

Method of analysis 

procedure. 
The element equations (12) are assembled and then solved by employing the following 

1. The element equations are linearized before assembly by employing a Taylor series 
expansion about a base value (no, lo, 'Pi). The resulting linearized finite element equations 
have the form 
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where 

(klje)) = r$) (i = 1, 2 ,..., 12) ( j  = 1, 2 ,..., 36), 

(ki!)) = (""> ( i  = 13, 14, ..., 24) ( j  = 1, 2, ..., 36), 
aqy) 

(k!!)) = rg) (i = 25, 26, ..., 36) ( j  = 1, 2, ..., 36). 

2. The integrals in equations (12) are evaluated numerically by employing the Gauss quad- 
rature algorithm. The linearized element equations (14) are assembled to yield 

K A Q =  -G,  

where K is the global element stiffness matrix, 

A Q = ( Z ) ,  G=(E). 

3. Equation (15) is solved iteratively by employing the Newton-Raphson algorithm 

~ n ~ p  = -@, 

Qn+l  = Q" + AQ". 

The iterative process is terminated when the norm IIAQII is less than a specified error. The 
process was assumed to be divergent if the error was not satisfied in five iterations. The 
equations were solved by employing a quasi-steady-state procedure, i.e. by increasing the 
values of the Reynolds numbers in small increments (e.g. Re' = 0, ReZ = 10, Re3 = 100, 
etc.), beginning with the creeping flow solution (Re' = 0). The results obtained for Re'" 
were used as initial estimates for the case with Reynolds numbers Re'"''. 

RESULTS 

Case studies 

The procedure described above was implemented with the use of a computer program. 
Results for 0, 'F and were obtained by running the computer programme in double 
precision with varying radius ratios, Reynolds numbers and mesh sizes. The values of radius 
ratios (a), corresponding aspect ratios (y) and final values of N which were employed in 
this research are given in Table I. 
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Table I. Case studies 

a Number of elements (N) Aspect ratio (y) 

0.1 4 x 8  0.87 
0.2 4 x 8  0.98 
0.3 4 x 8  1.12 
0.44 4 x 12 0.93 
0.5 4 x 12 1.05 
0.6 4 x 12 1.31 
0.775 2 x 24 0.58 
0.8 2 x 24 0.65 
0.825 2 x 24 0.75 
0.8 5 2 x 24 0.87 
0.875 2 x 24 1.05 
0.9 2 x 24 1.31 

Validation of modified Galerkin method 

The finite element procedure was tested for convergence and accuracy by first applying 
it to several one- and two-dimensional linear boundary value problems. Although not shown 
here, the method yielded results which were in excellent agreement with those obtained from 
the exact solution.48 Moreover, for a given number of elements the results were more precise 
than those obtained from the conventional Ritz and Galerkin methods. 

The number of elements required for convergence of the 0, 'P, i, TI and T, results for 
the fluid problem was affected by the radius ratio (a), the number of elements (N) ,  the 
aspect ratio (y) and the Reynolds number (Re). Typical values of N which were employed 
to test convergence are given in Table 11. For low Reynolds numbers (Re < 100) the solution 
process converged for all cases regardless of the values of N and y.48 However, the aspect 
ratio must be maintained at a value near unity in order to obtain good results for high 
Reynolds numbers. The results failed to converge for a = 0.9 and y > 2.7 regardless of N .  
In general there was a small discrepancy between the steady state results for TI and T,, 
even though these values should be equal. This discrepancy, which increased as the Reynolds 
number increased and N decreased, was also noted by other  investigator^.^^^^^ 

Results for the inner torque (- Tl) are compared in Table 111 with those obtained from 
the creeping flow solution (Re + 0) for various values of a. As can be seen from the table, 
the results are all in good agreement. Values of the torque (-Tl) were also compared with 

Table 11. Numbers of elements (N = N, x N,) for test- 
ing convergence 

N = 2 ~ 4  N = 3 ~ 6  N = 4 ~ 8  
y = 0.98 = 0.98 y = 0.98 a = 0.2 

N = 2 ~ 6  N = 3 ~ 9  N = 4 ~ 1 2  
y = 1.05 y = 1.05 a =0.5 = 1.05 

N = 2 ~ 6  N = 2 ~ 1 2  N = 2 ~ 2 4  
y = 5.24 y = 2.62 y = 1.31 a = 0.9 
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Table 111. Comparison of torque results ( -  TI) 
with creeping flow solution 

a Creeping flow solution This study 

0.2 0.0242 0.0240 
0.44 0.2794 0.2792 
0.5 0.4286 0.4285 
0.9 8.0701 8.0700 

Table IV. Comparison of torque results (- TI) with results of other investigators 

Case 

a = 0.2, Re = 10 
a = 02, Re = 100 
a = 0.5, Re = 10 
a = 0.5, Re = 100 
a = 05, Re = 500 
a = 0.5, Re = lo00 
a = 0.5. Re = 2000 
a = 0.9. Re = 10 
a = 0.9, Re = 100 

Dennis 
and 

SinghZ0 

- 

0,446 
0.738 
0.978 
1.285 

Dennis Munson 
and and Yang 

Quartapellez9 Joseph16 et aL3’ 

- 0.0241 
- 0.0244 

- 0.429 0.4287 
0.445 0.446 0.4463 
0.770 0741 0.7691 
1.039 0.986 1.010 

- 1.390 
- 8.070 
- 8.073 

- 
- 

- 
- 
- 

Gagliardi 
et al.” 

0.0242 
0.0241 
0427 
0.443 

- 
8.07 
8.07 

This 
study 

0.0240 
0.0242 
0.4286 
04483 
0.7579 
1 ~oO05 
1.3008 
8.070 
8.073 

those obtained by other investigators who employed finite difference and perturbation 
methods to solve this problem. These results, which are shown in Table IV, are in good 
agreement for all cases. In general the results agree best with those obtained by Yang et 

The maximum discrepancy, which occurred with a = 0.5 and Re = 2000, is less than 
7%. The values of torque versus Reynolds number shown in Figure 4 are also in good 
agreement with those obtained by Munson and Menguturk4 for a = 0-44. 

Results for R, Y and [ were compared (qualitatively) with those obtained by several 
other i n v e s t i g a t ~ r s . ’ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . ~ ’  Typical comparisons of the R and Y contour plots are shown 
in Figures 5 and 6 for a = 0.5 and Re = 2000. The agreement between the TI, R, Y and results 
of this study and those obtained by other investigators demonstrates the validity of the modified 
Galerkin method. In general this good agreement was achieved by employing a mesh which 
was considerably coarser than that employed with the finite difference method (e.g. 4 x 12 in 
the case of a = 0.5 versus 16 x 2632 and 16 x 3229. 

Results for radius ratios 0.1 < a < 0775 
Very few results are available in the literature for wide radius ratios (a < 0.2), except for 

small Reynolds number (Re < Values obtained from this study for the torque ( -  TI) 
versus the Reynolds number are presented in Figure 7 for a = 02.  As can be seen (see also 
Table III), the value of - TI approaches (asymptotically) the value predicted by the creeping 
flow theory as the Reynolds number (Re) approaches zero. The curve is similar (qualitat- 
ively) to  that shown in Figure 4 for the medium radius ratio (a = 044); however, the amplitudes 
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0.65 

0.6 

0.55 

0.5 

7 7 0.45 

0.4 

0.35 

0.3 

0.25 I 

200 460 660 800 1 

Re 

Figure 4. - T, versus Reynolds number (a = 044): -, this study; , Munson and Menguturk4 

for corresponding values of Reynolds numbers are considerably smaller. Plots of torque ( -  TI) 
versus l/a are shown in Figure 8 for Re = 10,400,700 and 1000. Note that these curves become 
tangent to the horizontal asymptotes as a approaches zero. 

The Y contour plots with a = 01,  0.3, 0.5 and 0.775 are presented in Figures 9-12 for 
Re ranging from 100 to 1OOO. In this study Taylor vortices were not detected with 0 1  < a < 0.775 
regardless of the magnitude of Re or the increment of Re used in the quasi-steady-state procedure 
discussed in the method of analysis section. Note that in all these plots the location of Ymin 
shifts slightly outwards and towards the equator (0 = 90°) as Re increases. Curves showing the 
value of lYminl versus a are presented in Figure 13 for Re = 100, 500, 700 and IOOO. In general 
for a given Reynolds number the maximum value of lYminl occurs in those annuli with 
0.4 < a < 0.7. The maximum value increases with increasing Re. A plot of V, , ,  (maximum 
magnitude of the velocity vector in the r 4  plane) versus a is shown in Figure 14. The curves 
in this figure agree qualitatively with those for IYminI in Figure 13 and explain Munson and 
Menguturk’s4 observation that the onset of turbulent flow occurs first in annuli with medium 
radius ratios (0.5 < a < 07). 
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(a) Yang(N=20 x 20) (b) Thin rtudy (N=4 x 12) 
Figure 5. Comparison of fl contours (Q x 4) for a = 0.5 and Re = 2000: (a) Yang et a/.’’ (N = 20 x 20); (b) this study 

(N = 4 x 12) 

(a) Yang (N=20 x 20) (b) Thin study (N=4 x 12) 

Figure 6. Comparison of Y contours ( -Y  x lo4) for a = 0.5 and Re = 2000: (a) Yang et al.’* (N = 20 x 20); (b) this 
study (N = 4 x 12) 

To the best of our knowledge, the only results reported in the literature” for vorticity 
are those for a = 0 5  and Re = 100. The contour plots obtained from this study for a = 0.2 
with Re ranging from 10 to 700 are presented in Figure 15. The corresponding section 
curves at 8 = 45 O are shown in Figure 16. These figures indicate that the maximum (absolute) 
value of [ always occurs at the surface of the inner rotating sphere. This confirms Dennis and 
Q~ar t ape l l e ’ s~~  conclusion that the region near the inner rotating sphere is one of intense 
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0.038 

0.036 
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0.032 
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0.03 

0.028 

0.026 
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Re 

Figure 7. - T, versus Reynolds number (a: = 0.2) 

00  

vorticity generation. The plots in Figure 16 also show that the vorticity section curves tend to 
become oscillatory as Re increases. The plots of cmin versus a for Re = 10, 100, 500 and 700 in 
Figure 17 indicate that for a given Reynolds number the minimum value of vorticity also occurs 
in those annuli with 0.5 < a < 0.7. Recall that this feature was also observed for the streamfunc- 
tion (Ymin) and velocity (Vmax). 

Results for radius ratios 0.775 < a < 0.9 
The Y contour plots obtained with a = 08,  0-825, 0.85 and 0-875 are shown in Figures 

18-21. All these figures show the development of pinches (in the contour line) as the Reynolds 
number increases. This is followed by the development of (a) zero or one Taylor vortex when 
a = 0 8  and Re = 700 (Figure 18), (b) one Taylor vortex when a = 0.825 and Re = 650 (Figure 
19) and when a = 0.85 and Re = 750 (Figure 20) and (c) two Taylor vortices when a = 0.875 
and Re = 1125 (Figure 21). With a = 0.8 the development of either zero or one Taylor vortex 
was dependent on the increment Re employed in the solution process. Zero vortex developed 
when a small increment in Reynolds number (ARe = 100) was employed starting from the 
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Figure 8. - T, versus reciprocal of radius ratio (1/a) 

solution with Re = 700. One Taylor vortex developed when a large increment in Reynolds 
number (ARe = 300) was employed. Flow with two Taylor vortices did not develop with a = 0.8 
regardless of the magnitude of ARe. 

The results of this investigation indicate that for a = 04325 and 0.85 only one Taylor 
vortex develops as the Reynolds number approaches a critical value regardless of the magnitude 
of ARe. This was also true regarding the development of two Taylor vortices when a = 0.875. 
Contour plots for Y with a = 0.9 are shown in Figure 22 for various Reynolds numbers. In 
general Taylor vortices did not develop for a < 0.8 and a > 04375 regardless of the solution 
process. This is confirmed by the results of Buhler’ and Marcus and Tuckerman.” 

The inner torque values (-TI) versus the Reynolds number are plotted in Figure 23 for 
various radius ratios. Note that for a = 0.8 the magnitudes of the torque corresponding to 
one-Taylor-vortex flow are larger than the values of the torque corresponding to zero- 
Taylor-vortex flow. Except for the case with a = 0.8, zero-Taylor-vortex flow was not observed 
after the critical Reynolds number regardless of the increment ARe used in the solution process. 
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(a) Re=lOO 

(c) Re=500 

fbl Re=200 

(d) Re=700 

(f) Re=1000 

Figure 9. Contour plots of Y ( -Y  x 104) for 01 = 0.1 
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Re=200 

Re=500 

\ 

Re=850 

Re=700 

Re=lOOO 

Figure 10. Contour plots of Y (-ul x lo4) for a = Q3 
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Re=100 Re=200 

Re=500 Re=700 

Re=1000 

Figure 11. Contour plots of Y ( -Y x lo4) for a = 0.5 
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Re=100 Re=400 

Re=500 Re=650 

Re=800 

Figure 12. Contour plots of Y 

Re=1000 

-Y x lo4) for a = 0775  
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Figure 13. 1 Ymin I versus a 
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Figure 15. Contour plots of c (c x LO’) for a = 0.2 
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Figure 16. c versus r at 0 = 45" (a = 0.2) 

Figure 17. c,,,," versus cz 
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Figure 18. Contour plots of Y (-Y x lo4) for a = 0 8  



230 W. NI AND N. J. NIGRO 
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Figure 19. Contour plots of Y ( -Y  x lo4) for OL = 0.825 
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Figure 21. Contour plots of Y (-Y x lo4) for a = 0,875 
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Figure 22. Contour plots of Y ( -Y  x lo4) for a = 0.9 
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Figure 23. Torque (T,) versus Reynolds number (Re x .. zero vortex; 0, one vortex; x ,  two vortices 
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CONCLUSIONS 

The primary objective of this research was to study the use of a modified Galerkin finite 
element method to analyse the steady state flow of a fluid contained between two concentric, 
rotating spheres. This method does not require the existence of a potential function to 
formulate the finite element equations or that the field equations be amenable to integration 
by parts as in the case of the conventional Galerkin method. The method yielded good 
results for a wide range of Reynolds numbers and radius ratios. In general the accuracy 
of the results increased with decreasing mesh size; however, it was important that the aspect 
ratio be maintained near unity. Future research will be conducted by employing this method 
to analyse the transient fluid flow problem and problems with non-spherical cavities. 
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